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Abstract. Achterbahn is one of the stream cipher proposals in the eS-
TREAM project. The second version, denoted Achterbahn-Version 2, has
been moved to the second phase of the evaluation process. This paper
demonstrates an attack on this second version. In the attack, a quadratic
approximation of the output function is considered. The attack uses less
keystream bits than the upper limit given by the designers and the com-
putational complexity is significantly less than exhaustive key search.
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1 Introduction

The Achterbahn stream cipher is one of many candidates submitted to the eS-
TREAM [1] project. It is to be considered as a hardware efficient cipher, using a
key size of 80 bits. There have been some successful attacks on Achterbahn. As a
response to the attacks, the cipher was updated to a more secure version, denoted
Achterbahn-Version 2. Recently, eSTREAM moved into the second phase of the
evaluation process and Achterbahn-Version 2 is one of the phase 2 ciphers. The
design is based on the idea of a nonlinear combiner, but using nonlinear feedback
shift registers instead of registers with linear feedback. When Achterbahn was
tweaked, the designers focused on improving the cipher such that approximations
of the output function was not a threat. In this paper, we show that the tweak
was not enough, it is still possible to attack the cipher using approximations of
the output function. This is the first attack on Achterbahn-Version 2.

The paper is outlined as follows. Section 2 will discuss some background the-
ory. Section 3 gives a description of the Achterbahn stream cipher. In Section 4
we give the previous results on Achterbahn that are important to our analysis,
which is given in Section 5. Section 6 will conclude the paper.

2 Preliminaries

In this paper we will repeatedly refer to the bias of an approximation. The bias
ε of an approximation A of a Boolean function F is usually defined in one of two
ways.



1. Pr(P=A)=1/2 + ε. In this case, when n independent bits are xored the bias
of the sum is given by εn = 2n−1εn.

2. Pr(P=A)=1/2(1+ε). In this case, when n independent bits are xored the
bias of the sum is given by εn = εn.

The bias in the first case will always be half of the bias in the second case.
Nevertheless, it is common to approximate the number of keystream bits needed
in a distinguisher as

# samples needed =
1

ε2n
(1)

regardless which definition of the bias that has been used. The error probability
of the distinguisher decreases exponentially with a constant factor multiplied
with (1). Following the notation used in all previous papers on Achterbahn, we
will adopt the second case in this paper. Thus, ε = 2Pr(P = A)− 1. Obviously,
the sign of ε is irrelevant in the theoretical analysis.

3 Description of Achterbahn

The Achterbahn stream cipher was first proposed in [2] and later tweaked in [3].
This section will describe both versions of Achterbahn.

The cipher consists of a set of nonlinear feedback shift registers and an output
function, see Fig. 1. All registers are primitive, which in this context means that
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Fig. 1. Overview of the Achterbahn design idea.

the period of register Ri is 2Ni − 1, where Ni is the length of register Ri. We
denote this period by Ti. Hence,

Ti = 2Ni − 1, ∀i.

The output function is a Boolean function, taking one input bit from each
shift register and outputs a keystream bit.

Achterbahn comes in two variants, denoted reduced Achterbahn and full
Achterbahn. In reduced Achterbahn the input bit to the Boolean function from
shift register Ri is simply the output bit of Ri. In full Achterbahn the bit used



in the Boolean function is a key dependent linear combination of a few bits in
Ri. Achterbahn-Version 1 uses 8 shift registers. Their size ranges from 22 to 31
bits. The bits produced at each clock cycle by the shift registers are denoted
respectively by x1, . . . , x8 and the keystream bit z is produced by the Boolean
function

R(x1, . . . , x8) = x1 + x2 + x3 + x4 + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8.

Achterbahn-Version 2 uses two extra shift registers, hence, it consists of 10
nonlinear feedback shift registers of size ranging from 19 to 32 bits. The sizes
are N = 19, 22, 23, 25, 26, 27, 28, 29, 31 and 32. The Boolean output function in
Achterbahn-Version 2 is much larger than the function used in Version 1. It is
defined as

S(x1, . . . , x10) = x1 + x2 + x3 + x9 + G(x4, x5, x6, x7, x10)

+(x8 + x9)(G(x4, x5, x6, x7, x10) + H(x1, x2, x3, x4, x5, x6, x7, x10)),
where

G(x4, x5, x6, x7, x10) = x4(x5 ∨ x10) + x5(x6 ∨ x7) + x6(x4 ∨ x10)

+x7(x4 ∨ x6) + x10(x5 ∨ x7)

and

H(x1, x2, x3, x4, x5, x6, x7, x10) = x2 + x5 + x7 + x10 + (x3 + x4)x6

+(x1 + x2)(x3x6 + x6(x4 + x5)).

The function S has resiliency 5 and nonlinearity 448.
The key and IV initialization procedure is simple. First the registers are

loaded with the first bits of the key. Then the rest of the key and the IV is
loaded into the registers by xoring the update function with the key and IV.
After this is done the registers are clocked several extra times before starting
the keystream generation phase. For more details, see the design document [3].

4 Previous Analysis of Achterbahn

There are several papers analyzing the Achterbahn stream cipher. In this section
we take a closer look at them and give the results that are relevant to the attack
given in Section 5.

4.1 Analysis of Achterbahn-Version 1

Achterbahn-Version 1 was first cryptanalysed in [4], taking advantage of weak-
nesses found in the Boolean output function. The designers answered by giv-
ing two alternative combining functions R′ and R′′ in [5]. In [6], which is an
extended and published version of [4], the authors show that the cipher is



weak even if the new combining functions are used. An important observa-
tion in [4] is the following. Assume that x5 = x6 = 0 in R(x1, . . . , x8). Then
R(x1, . . . , x8) is a purely linear function. The linear complexity of the resulting
function l(t) = x1(t) + x2(t) + x3(t) + x4(t) is then bounded by the sum of the
linear complexities of the registers R1, R2, R3 and R4, which is approximately
226. Hence assuming that x5 = x6 = 0, there are parity checks involving at most
226 consecutive bits. This parity check equation could be found by noting that
l(t)⊕ l(t + Ti) does not depend on the variable xi. Doing this for i = 1, 2, 3 and
4, a parity check equation involving 16 terms within a time interval of 226.75

keystream bits can be found. By knowing for which initial states of R5 and R6

these 16 terms will be zero, i.e., when the parity check was valid with probability
1, the key could be recovered.

The method of finding a parity check was nicely refined and generalized
in [3]. They note that the sequence generated by Ri has characteristic polynomial
xTi − 1. Furthermore,

g(x) = (xT1 − 1)(xT2 − 1)(xT3 − 1)(xT4 − 1)

is a characteristic polynomial of l(t). Even if all variables do not appear linearly in
the ANF of a Boolean function, a sparse parity check can easily be found. For in-
stance, the sequence produced by the function F (t) = x1(t)x2(t)+x1(t)x2(t)x3(t)
has characteristic polynomial

g(x) = (xT1T2 − 1)(xT1T2T3 − 1)

giving a parity check equation involving only 4 terms.
In [6], the authors also demonstrated that it is possible to break Achter-

bahn by considering biased linear approximations of the output function. The
approximation

z(t) = x1(t) ⊕ x2(t) ⊕ x3(t) ⊕ x4(t) ⊕ x6(t)

holds with probability 0.75, i.e., it has a bias ε = 0.5. Since there are 32 terms in
the corresponding parity check equation, the total bias is 2−32 and a distinguish-
ing attack using 264 bits exists. Furthermore, they note that by guessing the state
of register R1, the parity check will only involve 16 terms and the distinguisher
will only need 232 bits. Additionally, the computational complexity will increase
by a factor of 223. Now the attack is a key recovery attack with computational
complexity 255 using 232 bits of keystream. This is the best known attack on
reduced Achterbahn. The same attack is possible on the full version, but the
computational complexity is then 261 instead.

4.2 Analysis of Achterbahn-Version 2

In [3], the designers of Achterbahn demonstrates that the attacks mentioned
above will not work when applied to Version 2. The is mostly due to the fact
that the combining function S(x1, . . . , x10) is 5-resilient, thus any biased linear



approximation has at least 6 terms and the corresponding parity check will have
64 terms. By guessing the state of the first two registers, the number of terms
in the parity check will be 16, but even then the computational complexity and
the keystream needed will be far above exhaustive key search.

Further, the designers also considered quadratic and cubic approximations
of S(x1, . . . , x10). In this section we give a description of the cubic case since the
result of this analysis gives a very important prerequisite for Achterbahn-Version
2. Our attack will use a quadratic approximation. The cubic approximation that
is considered to be most threatening is given by

C(x1, . . . , x10) = x4 + x6x9 + x1x2x3.

This approximation will agree with S with probability

63

128
=

1

2

(

1 −
1

64

)

⇒ ε = 2−6.

We can guess the content of register R4 with N4 = 25. The biased parity check
equation g(x) = (xT6T9−1)(xT1T2T3−1) has 4 terms and thus the bias ε4 = 2−24.
The distance between the first and the last bit in the parity check is almost
264 bits. The time complexity of this attack is 2482N4 = 273. This is less than
exhaustive key search and consequently the designers restrict the frame length

of Achterbahn-Version 2 to 263 bits.
Note that the previously described attack is impossible when the keystream

length is limited to 263 since then we cannot create any biased samples at all.
In most distinguishing attacks on stream ciphers, you can usually create biased
samples even if the keystream length is limited, it is just the case that you cannot
collect enough samples to detect the bias for sure.

5 Cryptanalysis of Achterbahn-Version 2

Since there is an attack requiring 264 keystream bits, and the frame length is
restricted to 263 bits, a new attack has to require less than 263 keystream bits
in order to be regarded as successful. A danger of restricting the amount of
keystream to some number due to the existence of an attack is that someone
might find an improvement of the attack. This would render the cipher insecure.
In this section we demonstrate exactly that. A straightforward approach is given
first and in Section 5.3 an improved variant is given, reducing the computational
complexity significantly.

5.1 Attack on the Reduced Variant

The complexities given in this subsection will be based on the reduced variant of
the cipher, i.e., the input to the Boolean combining function will be the rightmost
bit in each NLFSR.



The attack will consider the quadratic approximation

Q(x1, . . . , x10) = x1 + x2 + x3x8 + x4x6.

This approximation will agree with S with probability

33

64
=

1

2

(

1 +
1

32

)

⇒ ε = 2−5.

Denote the sequence produced by Q by z′(t). Using this approximation, we can
use the characteristic polynomial

g(x) = (xT3T8 − 1)(xT4T6 − 1).

which gives a parity check equation involving 4 terms. Looking at the sequence
generated by Achterbahn-Version 2, we know that if we consider the sequence

d(t) = z(t) ⊕ z(t + T3T8) ⊕ z(t + T4T6) ⊕ z(t + T3T8 + T4T6)

then d(t) will not depend on the quadratic terms in Q(x1, . . . , x10). With prob-
ability α = 1/2 + ε4 = 1/2 + 2−20 the sequence d(t) will equal

d(t)
α
= z′(t) ⊕ z′(t + T3T8) ⊕ z′(t + T4T6) ⊕ z′(t + T3T8 + T4T6)

= xt

1 ⊕ xt

2 ⊕ xt+T3T8

1 ⊕ xt+T3T8

2 ⊕ xt+T4T6

1 ⊕ xt+T4T6

2

⊕xt+T3T8+T4T6

1 ⊕ xt+T3T8+T4T6

2 .

At this point we can guess the initial state of the registers R1 and R2 as sug-
gested in [3], where they used another approximation. The length of these two
registers is N1 = 19 and N2 = 22 respectively. The amount of keystream needed
to distinguish the output sequence from random is 240 so the computational
complexity would be 219+22+40 = 281, which is more than exhaustive key search.
The distance between the bits in the sum is T3T8 + T4T6 ≈ 253 so this would be
the amount of keystream needed. Instead of taking this approach we note that
the length of register R1 is N1 = 19, hence

R1(t) = R1(t + T1) = R1(t + 219
− 1).

Thus, for all keystream bits, distance T1 = 219 − 1 bits apart, x1 will always
contribute with the same value to the output function. Consequently, instead of
taking the sequence d(t) for t = 0 . . . 240 − 1 we can instead take the sequence
d′(t) = d(t(219 − 1)) for t = 0 . . . 240 − 1, i.e., jump forward T1 steps for each
sample. Hence,

d′(t) = z(tT1) ⊕ z(tT1 + T3T8) ⊕ z(tT1 + T4T6) ⊕ z(tT1 + T3T8 + T4T6)
α
= xtT1

2 ⊕ xtT1+T4T6

2 ⊕ xtT1+T3T8

2 ⊕ xtT1+T4T6+T3T8

2 ⊕ γ(t),

where
γ(t) = xtT1

1 ⊕ xtT1+T4T6

1 ⊕ xtT1+T3T8

1 ⊕ xtT1+T4T6+T3T8

1



is a constant. If the value of γ(t) = 0, then the probability α = 1/2+2−20. If the
value γ(t) = 1 then α = 1/2 − 2−20. In any case, the number of samples needed
is 240. The total amount of keystream required in this approach will increase
with a factor of 2T1 , i.e.,

# keystream bits needed = 253 + 219240 = 259.02.

This value is less than the maximum length of a frame. The computational
complexity will be 240222 = 262, since now we only need to guess R2 with
N1 = 22. The amount of memory used in the phase of determining the state of
R2 is negligible.

When one state is known, finding the actual key used can be done using a
meet-in-the-middle attack and a time/memory tradeoff approach. First, R2 is
clocked backwards until we reach the state that ended the introduction of the
key. We denote this state ∆. Then the key is divided into two parts, k1 and k2

bits each and k2 = 80 − k1. We guess the first k1 bits of the key and clock the
register until after the introduction of this part. All possible 2k1 states are saved
in a table. Then the last k2 bits of the key are guessed, and the state ∆ is clocked
backwards k2 times reversing the introduction of the key. Any intersection of the
two states reached, gives a possible key candidate. Since R2 has size N2 = 22
we expect the number of intersections to be 2802−22 = 258, i.e., less than the
complexity of finding the state of R2. The step of finding the intersections will
require memory 2k1 and time 2k1 + 2k2 . Appropriate values can be e.g., k1 = 30
and k2 = 50. The total computational complexity of the attack would then be
262 + 258 = 262.09.

5.2 Attack on the Full Variant

The full Achterbahn-Version 2 uses a key dependent linear combination of the
shift register bits as input to the Boolean combining function. To the best of our
knowledge, there is no specification of Version 2 that explicitly gives the amount
of bits in each register that is used in the linear combination. However, in the
analysis given in [3, Sect. 3.3], the designers imply that for the registers R1, R2

and R3, 3 register bits are used in each. In our attack we are only interested in
the amount of bits used from R1 and R2 so this information is sufficient. The
consequence is that, when attacking the full variant, an extra factor of 23 has to
be multiplied when finding the state register R2.

5.3 Improving the Computational Complexity

In the previous subsection, a simple approach for the attack was given result-
ing in computational complexity 262.09 and 259.02 keystream bits for the reduced
variant. The computational complexity of the attack can be significantly reduced
using the fact that the period of the registers are very short. In this subsection
we go through each step in the attack and give the computational complexity in
each step.



– Collect keystream bits. In the first step, 259.02 keystream bits are col-
lected.

– Produce d’(t). From the keystream sequence, the new sequence d′(t) of
length 240 is computed. This will have computational complexity 242 since
each bit in d′(t) is the sum of 4 bits in the keystream.

– Build a table from d’(t). To speed up the exhaustive search of register
R2 we suggest to build a table with the bits in d′(t). Since R2 has short
period, only T2 = 222 − 1, all bits T2 positions apart will have same value.
For this reason we can go through d′(t) and count the number of zeros and
ones corresponding to each position in the sequence generated by R2, see
Fig 2. This step will have computational complexity 242 and requires about
222 words of memory.

Position in d’(t) # zeros # ones

0+iT2

1+iT2

2+iT2

...

T2+iT2

Fig. 2. Store the number of ones and zeros in a table.

– Recover R2. For each initial state of R2 the biased sum of the four bits

xtT1

2 ⊕ xtT1+T4T6

2 ⊕ xtT1+T3T8

2 ⊕ xtT1+T4T6+T3T8

2 , (2)

0 ≤ t < T2, is found. Note that all positions can be taken modulo T2 so this
step has only computational complexity T 2

2 = 244. The number of occur-
rences in the precomputed table is then added together where the column
used is the value of the sum (2). The correct initial state of R2 is then the
state giving the sum that is most far away from random, i.e., most far away
from 239 which is the expected sum in the random case. For full Achterbahn-
Version 2, this complexity will be increased to 247.

– Recover the key. To recover the key, the meet-in-the-middle approach
given in section 5.1 can be used. In that case 258 keys will be candidates as
correct key. To reduce this number, we first find the state of R1. This is easy
now since R2 is known. The table can be produced from the sequence d(t)
and the initial state of R1 is found with complexity T 2

1 = 238. When both
R1 and R2 are known the expected number of key candidates decreases to
280−22−19 = 239 and this step is no longer a computational bottleneck.



It is interesting to note that once we have received 259.02 keystream bits, the
maximum computational step is only 244 and 247 for the reduced and full variants
respectively. This is due to the fact that we only use a fraction of the received
keystream and that we can take advantage of the fact the the registers have short
period. It is debatable if we can claim that the computational complexity of the
attack is only about 244 (or 247) since producing and receiving the keystream
will require at least 259.02 clockings of the cipher. On the other hand, if we are
given a randomly accessible memory with 259.02 keystream bits, then the key
is found with about 244 (or 247) computational steps since not all bits on the
memory will be accessed. This could be a possible scenario in the case of future
DVD formats with extremely high resolution, though the access time would
probably be a bottleneck in that case. Anyway, we will be conservative in our
claims and consider the computational complexity to be the same as the amount
of keystream needed, i.e., 259.02. Consequently, the attack on full and reduced
Achterbahn-Version 2 will have the same complexity.

6 Conclusion

Achterbahn-Version 2 was designed to resist approximations of the output func-
tions, linear approximations as well as quadratic and cubic approximations. Due
to a cubic approximation, the amount of keystream that is allowed to be gener-
ated is limited to 263. In this paper we have shown that it is still possible to find
an attack using a quadratic approximation. The amount of keystream needed
in the attack is below the given limit. Instead of guessing both R1 and R2, as
was done in a previous analysis, we guess only one of the registers. The attack
on Achterbahn-Version 2 has computational complexity 259.02 and needs 259.02

keystream bits. After receiving the keystream bits the computational step is very
fast due to the fact that we do not use all keystream bits and that the periods
of the registers are very short. The complexities will be the same for both the
full and the reduced variants of the cipher.

References

1. ECRYPT: eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. (Avail-
able at http://www.ecrypt.eu.org/stream/)
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