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Abstract. In this article, we present a synchronous stream-cipher named
TSC-4, together with security analysis and implementation results. TSC-

4 is designed to be well suited for constrained hardware with an intended
security level of 80 bits. With 4× 4 s-boxes at its core, the design leaves
open the possibility for implementations of very low power consumption.
As an improvement of TSC-3, TSC-4 shows better resiliency against dis-
tinguishing attacks.
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1 Introduction

Few years ago, Klimov and Shamir started developing the theory of T-functions[1–
3]. A T-function is a function acting on a collection of memory words, with a
weak one-wayness property. It started out as a tool for block ciphers, but is now
more of a building block for a stream cipher.

An important class of T-functions consists of those with single cycle property.
Any T-function with single cycle property is equivalent to a LFSR of maximum
length, and has potential to construct a very fast stream cipher. Unfortunately,
only a small family of single cycle T-functions are known for now.

In 2004, we presented a new class of single cycle T-function[4, 5]. Although
previous T-functions targeted software implementations, our T-function was de-
signed to be light and was well suited for constrained hardware. Also, we pro-
posed the stream cipher based on this T-function, TSC-1, TSC-2[5] and TSC-
3[6]. We used the T-function to resist against the powerful attacks which are
applied to the stream ciphers based on LFSR, such as algebraic attacks [10–12]
and correlation attacks[8, 9] and to be possible to work out the period. However,
Künzli et al. and Muller et al. described distinguishing and key recovery attacks
against TSC family[13, 14]. This attack was used that our T-function did not
offer a sufficient level of diffusion. In order to prevent distinguishing attacks, we
modified the cipher by carefully choosing an s-box and a nonlinear function in
it.

In this article, we present a synchronous stream-cipher named TSC-4 (T-
function based Stream-Cipher ver 4), together with security analysis and imple-
mentation results. The main environment of the cipher is targeted to constrained



hardware with an intended security level of 80 bits. With 4 × 4 s-boxes at its
core, the design leaves open the possibility for implementations of very low power
consumption.

2 Cipher specification

In this section, we describe specifications of TSC-4, including the internal state,
the cipher body and state initialization. As seen in Fig. 1, TSC-4 is a filter
generator based on T-functions, whose internal state consists of two 128-bit
states of T-functions. After each update, an 8-bit output keystream is produced
from the states through a nonlinear filter.

2.1 Internal state of T-function

We denote a 128-bit state by

x = (xk)
3
k=0,

where each word xk, k = 0, . . . , 3 has 32 bits in length. Let [x]i, i = 0, . . . , n− 1
denote the i-th bit of an n-bit word x. Then the word(vector) x will interchange-
ably represent an integer, if necessary, by the following equation:

x =

n−1
∑

i=0

[x]i2
i. (1)

With the above notations, we can represent each internal state in a matrix
form as follows:

x =

















x3

x2

x1

x0

↑
LSB

↑
MSB

=

← LSB

← MSB

[x]i [x]0

















Here [x]i denotes the i-th column of state x.

2.2 Main body

TSC-4 takes an 80-bit length secret key K and an 80-bit length public initial-
ization vector IV . The structure of TSC-4 is illustrated in Fig. 1.
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Fig. 1. The structure of TSC-4

Parameters: Two parameters p1(x) and p2(y) are defined with a number of
temporary variables as follows:

π(x) = x0 ∧ x1 ∧ x2 ∧ x3,

o1(x) = π(x)⊕ (π(x) + 0x51291089),

e(x) = (x0 + x1 + x2 + x3)¿1,

p1(x) = o1(x)⊕ e(x),

π(y) = y0 ∧ y1 ∧ y2 ∧ y3,

o2(y) = π(y)⊕ (π(y) + 0x12910895),

e(y) = (y0 + y1 + y2 + y3)¿1,

p2(y) = o2(y)⊕ e(y),

(2)

where ∧, ⊕ and ¿ denote bitwise AND, bitwise XOR operation, and left shift of
32-bit words, respectively. The additions are done modulo 232 using the equation
(1). Note that oi, i = 1, 2 are odd parameters and e is an even parameter [5].

S-box application: We fix a 4 × 4 s-box S, defined in C-language style as
follows:

S[16] = {9,2,11,15,3,0,14,4,10,13,12,5,6,8,7,1}; (3)

Now T-functions Ti, i = 1, 2 on input states x, y are defined as follows:

[T1(x)]i =

{

S ([x]i) if [p1(x)]i = 1,

S6([x]i) if [p1(x)]i = 0,
(4)



[T2(y)]i =

{

S ([y]i) if [p2(y)]i = 1,

S6([y]i) if [p2(y)]i = 0,
(5)

where the columns [x]i, [T1(x)]i, [y]i and [T2(y)]i are regarded as 4-bit integers
by the equation (1).

Nonlinear filter: The filter produces the actual output keystream from the
current internal states. We compute six 8-bit temporary variables (a0, · · · , a5)
as follows:

a0 = ((x3)À24 ∧ 0xff) + ((y1)À8 ∧ 0xff),

a1 = ((x0)À24 ∧ 0xff) + ((y2)À8 ∧ 0xff),

a2 = ((x2)À16 ∧ 0xff) + ((y3)À16 ∧ 0xff), (6)

a3 = ((x1)À16 ∧ 0xff) + ((y0)À16 ∧ 0xff),

a4 = ((x3)À8 ∧ 0xff) + ((y2)À24 ∧ 0xff),

a5 = ((x0)À8 ∧ 0xff) + ((y1)À24 ∧ 0xff),

where the additions are done modulo 28. Now the 8-bit keystream z is defined
to be

z = a0 ⊕ (a1)≫5 ⊕ (a2)≫2 ⊕ (a3)≫5 ⊕ (a4)≫6 ⊕ (a5)≫2, (7)

where ≫ denote rotation to the right.

2.3 State initialization

We now describe how the state is initialized from a given key and an IV. The
internal state consists of 8 words as seen in Fig. 2.

x =

















x3

x2

x1

x0

y =

















y3

y2

y1

y0

Fig. 2. Internal state of TSC-4



Key/IV Loading: Let K = (k79, k78, · · · , k1, k0) and IV = (iv79, iv78, · · · , iv1,

iv0) be an 80-bit key and an 80-bit IV, respectively. Then the internal state is
initialized as follows:

1. x0 = (k31, k30, · · · , k1, k0)
2. x1 = (k63, k62, · · · , k33, k32)
3. x2 = (iv31, iv30, · · · , iv1, iv0)
4. x3 = (iv63, iv62, · · · , iv33, iv32)
5. y0 = (iv15, · · · , iv0, iv79, · · · , iv64)
6. y1 = (iv47, iv46, · · · , iv17, iv16)
7. y2 = (k15, · · · , k0, k79, · · · , k64)
8. y3 = (k47, k46, · · · , k17, k16)

Warm-up: Once the internal state is initialized, the K and IV are mixed by
the following process.

1. Run cipher body once to produce a single 8-bit output.
2. Rotate x1 and y0 to the left by 8 bits.
3. XOR the output to the least significant 8 bits of x1 and y0.

The key and IV setup is completed by repeating the above three steps by eight
times.

3 Security

TSC-4 is intended for 80-bit security. For the moment, the best attack on TSC-4

we know of is the brute force attack of complexity 280.

3.1 Statistical tests

We have done tests similar to the ones presented in [7] and have verified that
this proposal gives good statistical results.

3.2 Period

The period of TSC-4 is 2128. To see this, we already know that the period of each
T-function is 2128, as guaranteed by the single cycle property [5]. So, first note
that the period of TSC-4 has to be a divisor of 2128. Now, initialize two register
contents with the all zero state and consider what each content of the registers
would be after 2124 iterated applications of the T-function. Since the period of
each T-function restricted to the lower 31 columns is 2124, all columns except
the most significant column should be zero. Now we can show that there exists
a nonzero bit in the output 8-bit keystream, since the most significant columns
determine the i-th output bit for i=1, 2, 5, 7. Furthermore, when observed every
2124 iterations apart, due to description (4) and (5) and the definition of an odd



parameter, the change of the most significant columns follow some fixed odd
power of the S-box, which is of cycle length 16. Explicit calculation of the 16
keystream output words for each odd power of the s-box confirms that, in all
odd power cases, one has to go through all 16 points before reaching the starting
point. Hence the period of the cipher is 16 · 2124 = 2128.

3.3 Correlation attack

Difficulty of correlation attacks can also be obtained from the rotations in the
filter. In the last step of a correlation attack, one needs to guess a part of the
state and compare calculated outputs with the actual keystream, checking for
the occurrence of expected correlation.

In our situation, any correlation found to exist with a single output bit will
involve multiple input bits. Hence correlation attacks do not seem to be appli-
cable.

3.4 Algebraic attack

In many cases, algebraic attacks are possible on stream ciphers built on LFSRs.
Once a single equation connecting the internal state to the output keystream is
worked out, the cipher logic can be run forward to produce more such equations.
During this process, the linear property of LFSRs keep the degree of new equa-
tions equal to the first equation. And this is the main reason for the success of
algebraic attacks on streamciphers.

In the case of TSC-4, the source of randomness, i.e., the T-function, is already
nonlinear. During the action of T-functions T1 and T2 on internal states x and
y, the degree of new equation increase in the degree of a previous equation.
Hence algebraic attacks do not seem to be applicable.

3.5 Guess-then-determine attack

One property of T-functions, that could be bad from the viewpoint of security,
is that it can be restricted to any number of its lower columns. In other words a
part of internal state of T-function can be guessed and run forward indefinitely,
opening up the possibility of a guess-then-determine attack.

The rotations used in the filter eliminates this weakness. They have been
chosen so that any single output bit receives direct effect of more twelve bits
that are spread widely apart within two states. So it is not possible to calculate
any output bit with the information of any small number of internal states.

Even if all modular additions in the filter were replaced with XORs, in order to
calculate any one of the 8 output bits continuously, one would need to guess 96
bits (8×12 bits), so no meaningful attack can be achieved through this approach.



3.6 Distinguishing attack

Bit-flip probability: We have chosen the s-box (3) to satisfy the following
conditions.

1. At the application of S, each of the four bits has bit-flip probability of 1
2 .

2. The same is true for S6.

More precisely, the first condition states that

#{ 0 ≤ t < 16 | the k-th bit of t⊕ S(t) is 1} = 8,

for each k = 0, 1, 2, 3. Due to this property, regardless of the behavior of the odd
parameters p1(x) and p2(y), every bit in the state is guaranteed to have bit-flip
probability 1

2 at the action of T.

Bit-flip bias of multiple applications of T-function: There are strong dis-
tinguishing attacks[13, 14] applicable to previous versions[5, 6] of this cipher. The
main observation used in the attack is that even though the bit-flip probability
of T-function is close to 1

2 , this is not true for its multiple applications. This
property is still present in the current design. However, TSC-4 is designed to be
resistant to the distinguishing attacks by taking the following cases into account:

Case 1 The strongest bit-flip bias between the same bit position for multiple
applications. The algorithms TSC-1 and TSC-2[5] are analyzed using this
property[13, 14]. In this case, we deal with the bias of [z]ti ⊕ [z]t+δ

i , where δ
is the number of iterations of T-function.

Case 2 The strongest bit-flip bias between the distinct bit position in the same
column for multiple applications. The algorithm TSC-3[6] is analyzed using
this property[14]. In this case, we deal with the bias of [z]ti ⊕ [z]t+δ

j , i 6= j.
Case 3 The strongest bit-flip bias between the linear relations of the same bits

for multiple applications. This property is considered in this paper. In this
case, we deal with the bias of [z]ti ⊕ [z]tj ⊕ [z]t+δ

j ⊕ [z]t+δ
j , i 6= j.

Table 1. Bit-flip bias of [xk]
t

i = [xk]
t+δ

i
(1 ≤ δ ≤ 15)

δ 1 2 3 4 5 6 7 8

| log2ε| ∞ ∞ 5 6 7 6 ∞ 8.42

δ 9 10 11 12 13 14 15 · · ·

| log2ε| 9.42 7.42 13 9.91 6.25 7.94 10.71 · · ·

First of all, we could obtain the property that a bit-flip bias between the
same bit positions for δ (1 ≤ δ ≤ 1000) iterations of T-function is less than 2−5

through the experiments (Fig. 3). The pattern of the plot in Fig. 3 suggests that
the property holds for δ > 1000 iterations. Table 1 shows the exact bit-flip bias
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Fig. 3. Bit-flip bias of [xk]
t

i = [xk]
t+δ

i
(1 ≤ δ ≤ 1000)

“ε”1 between the same bit positions after δ (1 ≤ δ ≤ 15) times iteration, where
xt+δ denote Tδ(xt). By using the nonlinear filter, we can obtain a linear relation
of the output filter like this (i = 0, · · · , 7):

[z]ti ⊕ [z]t+δ
i = ([a0]

t
i ⊕ [a0]

t+δ
i )⊕ ([a1]

t
i+5( mod 8) ⊕ [a1]

t+δ
i+5( mod 8))

⊕ ([a2]
t
i+2( mod 8) ⊕ [a2]

t+δ
i+2( mod 8))⊕ ([a3]

t
i+5( mod 8) ⊕ [a3]

t+δ
i+5( mod 8))

⊕ ([a4]
t
i+6( mod 8) ⊕ [a4]

t+δ
i+6( mod 8))⊕ ([a5]

t
i+2( mod 8) ⊕ [a5]

t+δ
i+2( mod 8)).

In this relation, each [ak]
t
i ⊕ [ak]

t+δ
i (k = 0, · · · , 5) is approximated as a linear

relation like this:

[a0]
t
i ⊕ [a0]

t+δ
i = [x3]

t
i+24 ⊕ [x3]

t+δ
i+24 ⊕ [y1]

t
i+8 ⊕ [y1]

t+δ
i+8 ⊕R0(i),

[a1]
t
i+5( mod 8) ⊕ [a1]

t+δ
i+5( mod 8) = [x0]

t
i+24 ⊕ [x0]

t+δ
i+24 ⊕ [y2]

t
i+8 ⊕ [y2]

t+δ
i+8 ⊕R1(i),

[a2]
t
i+2( mod 8) ⊕ [a2]

t+δ
i+2( mod 8) = [x2]

t
i+16 ⊕ [x2]

t+δ
i+16 ⊕ [y3]

t
i+16 ⊕ [y3]

t+δ
i+16 ⊕R2(i),

[a3]
t
i+5( mod 8) ⊕ [a3]

t+δ
i+5( mod 8) = [x1]

t
i+16 ⊕ [x1]

t+δ
i+16 ⊕ [y0]

t
i+16 ⊕ [y0]

t+δ
i+16 ⊕R3(i),

[a4]
t
i+6( mod 8) ⊕ [a4]

t+δ
i+6( mod 8) = [x3]

t
i+8 ⊕ [x3]

t+δ
i+8 ⊕ [y2]

t
i+24 ⊕ [y2]

t+δ
i+24 ⊕R4(i),

[a5]
t
i+2( mod 8) ⊕ [a5]

t+δ
i+2( mod 8) = [x0]

t
i+8 ⊕ [x0]

t+δ
i+8 ⊕ [y1]

t
i+24 ⊕ [y1]

t+δ
i+24 ⊕R5(i),

where Rk(i) (k = 0, · · · , 5) represents the carry bit. By using the above linear
approximation, we have a plausible argument that show the bit-flip bias of filter
output to be much less than 2−49(= 2−1 × (2−4)12). The bit-flip bias is approx-
imated using the Piling-up Lemma in case of δ = 3. In order to detect this bias,
data size of more than 298 is needed.

1 If ε = 0 then we represent | log2ε| as “∞”



Table 2. Bit-flip bias of [xk]
t

i = [xk′ ]t+δ

i
(| log2ε|)

case δ = 1
P

P
P

P
P

P
P

input
output

[x0]
t+1

i
[x1]

t+1

i
[x2]

t+1

i
[x3]

t+1

i

[x0]
t

i ∞ 4 4 ∞

[x1]
t

i 3 ∞ ∞ 4

[x2]
t

i ∞ 3 ∞ 4

[x3]
t

i 4 ∞ 3 ∞

case δ = 2
P

P
P

P
P

P
P

input
output

[x0]
t+2

i
[x2]

t+2

i
[x2]

t+2

i
[x3]

t+2

i

[x0]
t

i ∞ ∞ ∞ ∞

[x1]
t

i ∞ ∞ ∞ ∞

[x2]
t

i ∞ ∞ ∞ ∞

[x3]
t

i ∞ ∞ ∞ ∞

case δ = 3
P

P
P

P
P

P
P

input
output

[x0]
t+3

i
[x1]

t+3

i
[x2]

t+3

i
[x3]

t+3

i

[x0]
t

i 5 ∞ 5 5

[x1]
t

i ∞ 5 6 5

[x2]
t

i 5 6 5 ∞

[x3]
t

i 5 5 ∞ 5

case δ = 4
P

P
P

P
P

P
P

input
output

[x0]
t+4

i
[x1]

t+4

i
[x2]

t+4

i
[x3]

t+4

i

[x0]
t

i 6 5 4 ∞

[x1]
t

i 6 6 ∞ 4

[x2]
t

i ∞ 5 6 5

[x3]
t

i 4 ∞ 6 6

case δ = 5
P

P
P

P
P

P
P

input
output

[x0]
t+5

i
[x1]

t+5

i
[x2]

t+5

i
[x3]

t+5

i

[x0]
t

i 7 4.6 5.4 8

[x1]
t

i 5.6 7 6.8 5.4

[x2]
t

i 8 6.5 7 4.6

[x3]
t

i 5.4 8 6 7



The second, we observe a certain pair of distinct bit positions in the same
column yields a bit-flip bias worse than any bias between the same bit positions,
as seen in Table 2. These pairs with this property are like this:

The pair (x0, x1): The bit-flip bias of [x0]
t
i = [x1]

t+1
i is 2−4 and the bit-flip

bias of [x1]
t
i = [x0]

t+1
i is 2−3.

The pair (x2, x3): The bit-flip bias of [x2]
t
i = [x3]

t+1
i is 2−4 and the bit-flip

bias of [x3]
t
i = [x2]

t+1
i is 2−3.

The other pair: At least one case of the bit-flip bias is “0”. For example, the
bit-flip bias of [x0]

t
i = [x3]

t+1
i is “0”, the bit-flip bias of [x3]

t
i = [x0]

t+1
i is

2−4.

By using the property, we remove the nonlinear filter from relation of the pair
(x0, x1), (x2, x3). The nonlinear filter of TSC-4 is carefully chosen such that its
linear approximation contains the minimum number of pairs whose bit-flip bias
is less than 2−5.

Finally, we check the bit-flip bias between the linear relations of the same
bits for multiple applications. Those linear relations are as follows:

1. [x0]
t
i ⊕ [x1]

t
i = [x0]

t+δ
i ⊕ [x1]

t+δ
i , [x2]

t
i ⊕ [x3]

t
i = [x2]

t+δ
i ⊕ [x3]

t+δ
i .

2. [x0]
t
i ⊕ [x2]

t
i = [x0]

t+δ
i ⊕ [x2]

t+δ
i , [x1]

t
i ⊕ [x3]

t
i = [x1]

t+δ
i ⊕ [x3]

t+δ
i .

3. [x0]
t
i ⊕ [x3]

t
i = [x0]

t+δ
i ⊕ [x3]

t+δ
i , [x1]

t
i ⊕ [x2]

t
i = [x1]

t+δ
i ⊕ [x2]

t+δ
i .

Since the first relation is removed in the nonlinear filter, we consider other two
relations. Table 3 shows the bit-flip biases for each case.

Table 3. Bit-flip bias of [xk]
t

i ⊕ [xk′ ]ti = [xk]
t+δ

i
⊕ [xk′ ]t+δ

i
(| log2ε|)

δ (k, k′) = (0, 2) (k, k′) = (1, 3) (k, k′) = (0, 3) (k, k′) = (1, 2)

1 2.4150 2.4150 2.4150 ∞
2 ∞ ∞ ∞ 3.0000
3 ∞ ∞ ∞ 3.4150
4 ∞ ∞ ∞ 2.6781
5 3.7521 3.7521 3.7521 5.6781

6 3.4150 3.4150 3.4150 2.1926

7 4.9556 4.9556 4.9556 2.6163
8 4.3561 4.3561 4.3561 4.3561
9 8.5406 8.5406 8.5406 2.9860
10 9.4150 9.4150 9.4150 3.0170

11 4.8707 4.8707 4.8707 3.8401
12 7.2996 7.2996 7.2996 3.1703
13 3.7527 3.7527 3.7527 2.3618
14 5.3276 5.3276 5.3276 4.9125
15 5.7574 5.7574 5.7574 3.3714

16 8.3927 8.3927 8.3927 3.0438
...

...
...

...
...



Combining the two relation (k, k′) = (0, 2) and (k, k′) = (1, 3) in δ = 1, we
get the maximum bit-flip bias of this relation as 2−3.83(= 2−1 × (2−1.415)2).
Similarly, In case of (k, k′) = (0, 3) and (k, k′) = (1, 2), the maximum bit-flip
bias is 2−4.6076(= 2−1 × 2−2.415 × 2−1.1926) in δ = 6. So, we use the relation of
the pair (x0, x3), (x1, x2) in the nonlinear filter.

Therefore, we can assume that the distinguishing attack is not applicable to
the algorithm TSC-4.

3.7 Time-memory trade-off

We analyze the security of TSC-4 against time-memory-data(TMD) tradeoffs
presented in [18, 19]. Then, it guarantees the security against two well-known
TMD tradeoffs [15–17].

Simple case[18]: Since TSC-4 takes 80-bit key with 80-bit IV, Search space
of an attacker is the entropy space of size N = 2k(k = 160). The cost of TMD
attacks is O(2k/2). So, TMD attacks are expected to have complexity not lower
than O(280).

Sampling case[19]: Since TSC-4 takes 256-bit internal state and we can find
the set of all 256-bit keystream segments which starts with 8 zeros, search space
of an attacker is the entropy space of size N = 2k(k = 248). The cost of TMD
attacks is O(2k/2). So, TMD attacks are expected to have complexity not lower
than O(2124).

3.8 State initialization

We consider security issues related to key setup in this section. Our state retains
160-bit entropy after state initialization.

Entropy loss: Let us consider the question of whether our state initializa-
tion process allows every possible 160-bit state to occur with equal possibility.
This question is closely related to whether each step of the rekeying process is
invertible. Checking all the steps of Key/IV Loading and warm-up presented
in Section 2.3, we can see that all step is invertible. So, the states produced
through our state initialization process has exactly 160-bit entropy. Therefore
no equivalent keys are present.

Statistical property: For a good state initialization process, we would expect
one bit difference in key or IV to result in about half the state bits changing.
We did some basic experiments to verify this on our warm-up process.



4 Implementation

4.1 Hardware Implementation

TSC-4 consists of two T-functions and a nonlinear filter. In hardware implemen-
tation, critical path is an even parameter of a T-function, and 4 × 4 s-boxes
are components which requires large area. In updating internal states, s-box is
applied to all 64 columns.

In normal hardware design, one implement 64 s-boxes to maximize the through-
put. On the other hand, we can reduce the area by implementing one s-box for
each T-function, or by implementing one T-function instead of two.

Let Type A, Type B, Type C denote normal implementation, implementation
with one s-box for each T-function, implementation with one T-function and one
s-box respectively.

In Table 4 we summarize hardware figures when the implementation was
simulated on ASIC using Samsung 0.13µm library.

Table 4. Hardware related figures for TSC-4

Type State Gate Count Max. Clock Throughput/Power drain
Initialization /Throughput (100KHz clock)

A X 10510 100MHz/800Mbps 800kbps/11.86µW

A O 11878 100MHz/800Mbps 800kbps/12.78µW

B X 3100 250MHz/62.5Mbps 25kbps/4.65µW

B O 4027 198MHz/49.5Mbps 25kbps/5.52µW

C X 3026 230MHz/28.75Mbps 12.5kbps/4.51µW

C O 3958 198MHz/24.75Mbps 12.5kbps/5.50µW

4.2 Software Implementation

Our C-language implementation (not optimized) of TSC-4 shows the following
performance.

machine Pentium-IV 2.4GHz, 1GB RAM
OS Windows XP (SP1)
compiler Microsoft Visual C++ 6.0
encryption 150 cycles/byte

5 Conclusion

A synchronous streamcipher TSC-4 of 80-bit intended security level was pre-
sented with some security analysis and hardware related figures. As a result,



we failed to find an attack which is better than exhaust key search. The cipher
is suitable for constrained hardware environments, allowing for a wide range of
implementation choices.
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