
Key Recovery Attack on Py and Pypy with
Chosen IVs

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. In this paper we extend our previous attack to recover the
key of Py and Pypy. If the IV size is at least ten bytes, the chosen IV
attack can be applied to recover the key information of Py and Pypy.
In general, ivsiveb− 9 bytes of the key can be recovered, where ivsizeb
indicates the size of the IV in bytes. For example, for 256-bit key and
256-bit IV, the key is reduced to 72 bits with about 224 chosen IVs. For
128-bit key and 256-bit IV, the key can be recovered easily with about
224 chosen IVs.

1 Introduction

Py [1] and Pypy [2] are stream ciphers submitted to the ECRYPT eSTREAM
project. A distinguishing attack on Py was found by Paul, Preneel and Sekar
[4]. In that attack, the keystream can be distinguished from random with 289.2

outputs. Later, the attack was improved by Crowley [3], and the data required
in the attack is reduced to 272. In order to resist the distinguishing attack on
Py, the designers decided to discard half of the outputs, i.e., the first output of
the two outputs at each step is discarded. The new version is called Pypy.

The IV setup of Py and Pypy are identical. In [5], we showed that there is
serious flaw in the IV setup of Py and Pypy. For IVs with special difference, two
keystreams can be identical for every 216 IVs.

In this paper, we extend our attack to recover the key of Py and Pypy. We
show that Py and Pypy are vulnerable to the chosen IV attack.

This paper is organized as follows. In Sect. 2, we illustrate the IV setup of
Py and Pypy. Section 3 describes the attack of generating identical keystreams.
The key recovery attack is given in Sect. 4. Section 5 concludes this paper.

2 The Initialization of Py and Pypy [1]

The initializations of Py and Pypy are identical. The initialization consists of
two stages: key setup and IV setup. In key setup, the key is expanded into the
internal state of the cipher. In the IV setup, the IV is introduced into the state.



2.1 The key setup

In the following, we give the description of the key setup. P is an array with 256
8-bit elements. Y is an array with 260 32-bit elements, s is 32-bit. Y MININD =
−3, Y MAXIND = 256. The table ‘internal permutation’ is a constant permu-
tation table with 256 elements.

keysizeb=size of key in bytes;
ivsizeb=size of IV in bytes;
YMININD = -3; YMAXIND = 256;
s = internal_permutation[keysizeb1];
s = (s<<8) | internal_permutation[(s ^ (ivsizeb1))&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb1])&0xFF];
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again */
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}
for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

2.2 The IV setup

The IV setup is given below. EIV is a byte array with the same size as the IV.

/* Create an initial permutation */
u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);
u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;
for(i=0; i<256; i++)
{

P(i)=internal_permutation[v];
v+=d;

2



}
/* Now P is a permutation */
/* Initial s */
s = ((u32)v<<24)^((u32)d<<16)^((u32)P(254)<<8)^((u32)P(255));
s ^= Y(YMININD)+Y(YMAXIND);
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again, but with the last words of Y, and update EIV */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXINDi);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

/*updating the rolling array and s*/
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0)^(s&0xFF);
rotate(EIV);
swap(P(0),P(x0));
rotate(P);
Y(YMININD)=s=(s^Y(YMININD))+Y(x0);
rotate(Y);

}
s=s+Y(26)+Y(153)+Y(208);
if(s==0)

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

3 Identical Keystreams

At the beginning of the IV setup, only 15 bits of the IV (IV[0] and IV[1]) are
applied to initialize the array P and s (the least significant bit of IV[1] is not
used). For an IV pair, if those 15 bits are identical, then the resulting P are the
same. Then we notice that the IV is applied to update the values of s and EIV
as follows.

for(i=0; i<ivsizeb; i++)
{

3



s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

From [5], we know that for an IV pair with special difference, identical
keystreams appear with probability as high as 2−22.9. The identical keystreams
also leaks the information of the secret key, as illustrated in the rest of the paper.

4 Key Recovery Attack on Py and Pypy

In this section, we use the following IVs differences to illustrate the key recovery
attack on Py and Pypy (the other differences can be used in a similar way
to recover the key). Let two IVs iv1 and iv2 are different at only two bytes,
iv1[i]⊕ iv2[i] = 1 and iv1[i+1] 6= iv2[i+1] (i ≥ 1). Let the least significant bit of
iv1[i] be 1. This type of IV pair results in identical keystreams with probability
2−23.2.

4.1 Recover part of Y from the identical IV pairs

We are interested in the following algorithm in the IV setup.

for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

Denote the s at the end of the ith step of this algorithm as si, and denote
the least and most significant bytes of si as si,0 and si,3, respectively. Denote the
least and most significant bytes of Y (i) as Yi,0 and Yi,3, respectively. Denote ξ as
a binary noise with value 0 with probability 0.5. Denote B(x) as a function that
gives the least significant byte of x. For the above IV pair, if the two keystreams
are identical, then we know that at the end of the (i + 1)th step, the two s are
the same. It means that

(P (B(si−1,0 + iv1[i] + Y−3+i,0))⊕B(si−1,3 + Y−3+i,3 + ξ1)) + 256 + iv1[i + 1]
= (P (B(si−1,0 + iv2[i] + Y−3+i,0))⊕B(si−1,3 + Y−3+i,3 + ξ2)) + iv2[i + 1] (1)

4



where ξ1 and ξ2 are introduced by the carry bits when IV [i] and Y (−3 + i)
are introduced, and ξ1 = ξ2 with probability very close to 1 since the IV [i] has
negligible effect on the value of ξ1 and ξ2.

Suppose that there are several equations (1) with the same si−1,0 and si−1,3

(it can be achieved if the first i bytes of all the IVs are the same), then we can
recover the values of B(si−1,0 + Y−3+i,0) and B(si−1,3 + Y−3+i,3 + ξ). From the
experiment, we find that if there are two equations (1), in average the values
can be recovered together with 5.22 wrong values. If there are three equations
(1), in average the values can be recovered together with 1.29 wrong values. If
there are four equations (1), in average the values can be recovered together
with 0.54 wrong values. If there are five equations (1), in average the values
can be recovered together with 0.25 wrong values. If there are six equations
(1), in average the values can be recovered together with 0.12 wrong values. If
there are seven equations (1), in average the values can be recovered together
with 0.06 wrong values. It shows that the values of B(si−1,0 + Y−3+i,0) and
B(si−1,3 + Y−3+i,3 + ξ) can be determined with only a few equations (1).

After recovering a number of B(si−1,0 +Y−3+i,0) and B(si−1,3 +Y−3+i,3 + ξ)
for i ≥ 1, we proceed to recover part of the information of the array Y . Note
that

si,0 = P (B(si−1,0 + iv[i] + Y−3+i,0))⊕B(si−1,3 + Y−3+i,3 + ξ) (2)

Denote ivθ as a fixed IV with the first i bytes being identical to all the IVs with
differences at iv[i] and iv[i+1]. From ivθ[i], and the values of B(sθ

i−1,0+Y−3+i,0),
B(sθ

i−1,3 + Y−3+i,3 + ξ) and (2), we find the values of sθ
i,0. Suppose that when

we introduce the IV difference at the (i + 1)th and (i + 2)th bytes, the first
i + 1 bytes of each IV are identical to that of ivθ. Then we recover the value of
B(sθ

i,0+Y−3+i+1,0). From the values of B(sθ
i,0+Y−3+i+1,0) and sθ

i,0, we determine
the value of Y−3+i+1,0.

Generating the equations (1). The above attack can be successful if we can
find several equations (1) with the same si−1,0 and si−1,3. In the following, we
illustrate how to obtain these equations for 2 ≤ i ≤ ivsizeb − 3. To ensure
that the same si−1,0 and si−1,3 appear in these equations, we require that the
values of iv1[j] and iv2[j] (0 ≤ j < i) are fixed. Let the least significant bit of
iv[i] and the 8 bits of iv[i + 1] choose all the 512 values, and the other 119 bits
remain unchanged, then we obtain a 255 × 255 ≈ 216 desired IV paris. We call
these 512 IVs as a desired IV group. From the analysis given in [5], this type of
IV pair results in identical keystreams with probability 2−23.2, we thus obtain
2−23.2

216 = 2−7.2 identical keystream pairs from one desired IV group. It means
that we can obtain 2−7.2 equations (1) from one desired IV group. We modify
the values of the 7 most significant bits of iv1[i] and iv2[i], and 3 bits of iv1[i+2]
and iv2[i+2], then we obtain 27×23 = 210 desired IV groups. From these desired
IV groups, we obtain 210× 2−7.2 = 7 equations (1). There are 27× 23× 29 = 219

IVs being used in the attack. To find all the si,0 for 2 ≤ i ≤ ivsizeb− 3, we need
(ivsizeb− 4)× 219 IVs in the attack.

5



To ease the generation of the equations, we can set one fixed ivθ. When the
differences are introduced at iv[i] and iv[i + 1], then all the first i bytes of each
IV are chosen to be identical to that of ivθ.

We are able to recover si,0 for 2 ≤ i ≤ ivsizeb − 3. It indicates that we can
recover the values of Y−3+i,0 for 3 ≤ i ≤ ivsizeb− 3.

4.2 Recover the key

In the above analysis, we recovered the values of Y−3+i,0 for 3 ≤ i ≤ ivsizeb− 3.
Then we look at the last part of the key schedule.

for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

From the above algorithm, we obtain the following relation:

B(Y−3+i,0 + key[i + 1] + ξ′i)⊕ P (B(Y−3+i+3,0 + key[i + 4])) = Y−3+i+4 , (3)

where ξ′i indicates the carry bit noise introduced by key[i + 2] and key[i + 3], it
is computed as ξ′i ≈ (key[i + 2] + Y−3+i+1,0) >> 8. The value of the binary ξ′i is
0 with probability about 0.5.

Once the values of Y−3+i,0 (3 ≤ i ≤ ivsizeb − 3) are known, we find an
equation (3) linking key[i + 1] and key[i + 4] for (3 ≤ i ≤ ivsizeb − 7). Each
relation leaks at least 7 bits of key[i + 1] and key[i + 4]. There are (ivsizeb− 9)
relations, so at least 7× (keysizeb− 9) bits information of the key is leaked. We
note that the randomness of ξ′i does not affect the overall attack (once we guess
the values of key[4], key[5] and key[6], then we obtain the other key bytes key[j]
(6 < j ≤ ivsizeb − 3) and all the ξ′j (3 ≤ j ≤ ivsizeb − 7) ). Thus the leaked
information is (ivsizeb− 9) bytes.

If the IV size is 9 more bytes larger than the key size, then all information
of the key can be recovered.

4.3 Other attacks

In [5], the IV differences at three bytes are introduced. This type of IV differences
can also be applied to recover the key in a similar approach. We ignore here the
details of the attack exploiting the three-byte IV differences.

5 Conclusion

Py and Pypy are vulnerable to the chosen IV attack.

6



References

1. E. Biham, J. Seberry, “Py: A Fast and Secure Stream Cipher Using Rolling Ar-
rays.” Available at http://www.ecrypt.eu.org/stream/ciphers/py/py.ps .

2. E. Biham, J. Seberry, “Pypy: Another Version of Py.” Available at http://www.
ecrypt.eu.org/stream/papersdir/2006/038.pdf

3. P. Crowley, “Improved Cryptanalysis of Py.” Available at http://www.ecrypt.
eu.org/stream/papersdir/2006/010.pdf .

4. S. Paul, B. Preneel, S. Sekar, “Distinguishing Attack on the Stream Cipher Py.”
Fast Software Encryption – FSE 2006, to appear.

5. H. Wu, B. Preneel, “Attacking the IV Setup of Py and Pypy.” Available at
http://www. ecrypt.eu.org/stream/papersdir/2006/050.pdf

7


