
Attack the Dragon

H̊akan Englund and Alexander Maximov

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. Dragon is a word oriented stream cipher submitted to the
ECRYPT project, it operates on key sizes of 128 and 256 bits. The
original idea of the design is to use a nonlinear feedback shift register
(NLFSR) and a linear part (counter), combined by a filter function to
generate a new state of the NLFSR and produce the keystream. The
internal state of the cipher is 1088 bits, i.e., any kinds of TMD attacks
are not applicable. In this paper we present two statistical distinguishers
that distinguish Dragon from a random source both requiring around
O(2155) words of the keystream. In the first scenario the time complexity
is around O(2155+32) with the memory complexity O(232), whereas the
second scenario needs only O(2155) of time, but O(296) of memory. The
attack is based on a statistical weakness introduced into the keystream
by the filter function F . This is the first paper presenting an attack on
Dragon, and it shows that the cipher does not provide full security when
the key of size 256 bits is used.

1 Introduction

A stream cipher is a cryptographic primitive used to ensure privacy over a
communication channel. A common way to build a stream cipher is to use a
keystream generator (KSG) and add the plaintext and the output from the
keystream generator, resembling a one-time pad. A block cipher is another cryp-
tographic primitive, which could be considered as a one-to-one function, mapping
a block of the plaintext to a block of the ciphertext. Although block ciphers are
well studied, stream ciphers can offer certain advantages compared to block ci-
phers. Stream ciphers can offer much higher speed, and can be constructed to
be much smaller in hardware, and thus they are of great interest to the indus-
try. To mention a few of the most recent proposals of such word-oriented KSGs
are, e.g., VMPC [1], RC4A [2], RC4 [3], SEAL [4], SOBER [5], SNOW [6, 7],
PANAMA [8], Scream [9], MUGI [10], Helix [11], Rabbit [12], Turing [13], etc.

The NESSIE project [14] was funded by the European Unions Fifth Frame-
work Program and was launched in 2000. The main objective was to collect a
portfolio of strong cryptographic primitives from different fields of cryptogra-
phy, one of those fields was stream ciphers. During those three years of NESSIE
new techniques for cryptanalysis on stream ciphers were found, and many new
proposals were broken. After a few rounds of the project evaluation, all of the
stream cipher proposals were found to contain some weaknesses. At the end, no
stream cipher was included in the final portfolio.

The situation clearly requires the cryptographic community devote greater
attention to design and analysis of stream ciphers. Due to this reason, the Eu-
ropean project ECRYPT announced a call for stream cipher primitives. 35 pro-
posals were submitted to the project by April 2005, and most of them were
presented at the workshop SKEW 2005 [15] in May.

Cryptanalysis techniques discovered during the NESSIE project have allowed
to strengthen new designs greatly, and to break new algorithms has become more
difficult. However, there are many good submissions to ECRYPT, and the stream
cipher Dragon [16] is one of them.

Dragon, designed by a group of researches, Ed Dawson et. al., is a word
oriented stream cipher based on a linear block (counter) and a nonlinear feedback
shift register (NLFSR) with a very large internal state of 1088 bits, which is
updated by a nonlinear function denoted by F . This function is also used as
a filter function producing the keystream. The idea to use a NLFSR is quite
modern, and there are not many cryptanalysis techniques on NLFSRs yet found.

This is the first work which propose an attack on Dragon. In a distinguishing
attack one has to decide whether a given sequence (keystream) is the product of a
cipher, or a truly random generator. In this paper we show how statistical weak-
nesses in the F function can be used to create a distinguisher for Dragon. Our
distinguishing attack requires around O(2155) words of keystream from Dragon,
it has time complexity O(2155+32) and needs O(232) of memory, an alternative
method is also presented that only requires time complexity O(2155) but needs
O(296) of memory. This is an academic attack which shows that Dragon does
not provide full security when a key of size 256 bits is used, i.e., it can be broken
faster than exhaustive search. This kind of analysis is, perhaps, the most pow-
erful attack on stream ciphers, and, in some cases, it can be turned into a key
recovery attack.

The outline of the paper is the following. In Section 2 a short description
of the stream cipher Dragon is given. Afterward, in Section 3, we derive linear
relations and build our distinguisher. In Section 4 we summarize different at-
tack scenarios on Dragon, and finally, in Section 5 we present our results, make
conclusions and discuss possible ways to overcome the attack.

1.1 Notations and Assumptions

For notation purposes we use ⊕ and � to denote 32 bit parallel XOR and
arithmetical addition modulo 232, respectively. By x � n we denote a binary
shift of x by n bits to the right. We write x(t) to refer the value of a variable x
at the time instance t. By PExpr we denote a distribution of a random variable
or an expression “Expr”.

To build the distinguisher, we first make two reasonable assumptions common
for linear cryptanalysis:

(a) Assume that at any time t the internal state of NLFSR is from the uniform
distribution, i.e., the words Bi are considered independent and uniformly
distributed;

(b) Assume that the keystream words are independent.

2 A Short Description of Dragon

Dragon is a stream cipher constructed using a large nonlinear feedback shift
register, an update function denoted by F , and a memory denoted by M 1 . It is
a word oriented cipher operating on 32 bit words, the NLFSR is 1024 bits long,
i.e., 32 words long. The words in the internal state are denoted by Bi, 0 ≤ i ≤ 31
. The memory M (counter) contains 64 bits, which is used as a linear part with
the period of 264. The cipher handles two key sizes, namely 128 bits keys and
256 bit keys, in our attack we disregard the initialization procedure and just
assume that the initial state of the NLFSR is truly random.

Each round the F function takes six words as input and produces six words
of output, as shown in Figure 1. These six words, denoted by a, b, c, d, e, f , are

Fig. 1. F -function.

formed from words of the NLFSR and the memory register M , as explained in

1 This is rather a new way to design stream ciphers, when two independent linear and
nonlinear parts are combined by a filter function. A similar idea is used in other
proposals to ECRYPT, e.g., stream cipher Grain and others.

(1), where M = (ML||MR).

a = B0 b = B9 c = B16

d = B19 e = B30 ⊕ ML f = B31 ⊕ MR
(1)

The F function uses six Z232 → Z232 S-boxes G1, G2, G3, H1, H2 and H3,
the purpose of which is to provide high algebraic immunity and non-linearity.
These S-boxes are constructed from two other fixed Z28 → Z232 S-boxes, S1 and
S2, as shown below.

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3),
G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3),
G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3),
H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3),
H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3),
H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3),

where 32 bits of input, x, is represented by its four bytes as x = x0||x1||x2||x3.
The exact specification of the S-boxes can be found in [16]. The output of

the function F is denoted as (a′, b′, c′, d′, e′, f ′), from which the two words a′ and
e′ forms 64 bits of keystream as k = a′||e′. Two other output words from the
filter function are used to update the NLFSR as follows B0 = b′, B1 = c′, the
rest of the state is updated as Bi = Bi−2, 2 ≤ i ≤ 31. A short description of the
keystream generation function is summarized in Figure 2.

Input = {B0|| . . . ||B31, M}
1. (ML||MR) = M.
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f).
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31.
6. M + +
7. k = a′||e′

Output = {k, B0, . . . , B31, M}

Fig. 2. Dragons’s Keystream Generation Function.

3 A Linear Distinguishing Attack on Dragon

3.1 Linear Approximation of the Function F

Recall, at time t the input to the function F is a vector of six words (a, b, c, d, e, f) =
(B0, B9, B16, B19, B30⊕ML, B31⊕MR). The output from the function is (a′, b′, c′, d′,

e′, f ′). To simplify further expressions let us introduce new variables.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b′′ = b ⊕ a = B9 ⊕ B0

c′′ = c � (a ⊕ b) = B16 � (B9 ⊕ B0)
d′′ = d ⊕ c = B19 ⊕ B16

f ′′ = f ⊕ e = B30 ⊕ B31 ⊕ ML ⊕ MR

(2)

If the words denoted by Bs are independent, then these new variables will
also be independent (since B19 is independent of B16 and random, then d′′ is
independent and random as well; similarly, independence of B16 lead to the
independence of c′′, etc.).

The output from F can be expressed via (a, b′′, c′′, d′′, e, f ′′) as follows.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a′ = (a � f ′′) ⊕ H1(b′′ ⊕ G3(e � d′′))⊕(
(f ′′ ⊕ G2(c′′)) �

(
c′′ ⊕ H2(d′′ ⊕ G1(a � f ′′))

))
e′ = (e � d′′) ⊕ H3(f ′′ ⊕ G2(c′′))⊕(

(d′′ ⊕ G1(a � f ′′)) �
(
(a � f ′′) ⊕ H1(b′′ ⊕ G3(e � d′′))

)) (3)

Let us now analyze the expression for a′. The variable b′′ appears only once
(in the input of H1), which means that this input is independent from other
terms of the expression, i.e., the term H1(. . .) can be substituted by H1(r1),
where r1 is some independent and uniformly distributed random variable. Then,
the same will happen with the input for H2.

We would like to approximate the expression for a′ as

a′ = a ⊕ Na, (4)

where Na is some non uniformly distributed noise variable. If we XOR both sides
with a and then substitute a′ with the expression from (3), we derive

Na = a ⊕ (a � f ′′) ⊕ H1(r1) ⊕
(
(f ′′ ⊕ G2(c′′)) � (c′′ ⊕ H2(r2))

)
. (5)

Despite the fact that G and H are Z232 → Z232 functions, they are not likely
to be one-to-one mappings, consider the way the S-boxes are used as Z28 → Z232

functions 2 . It means that even if the input to a G or a H function is completely
random, then the output will still be biased. Moreover, the output from the
expressions (x ⊕ Gi(x) and similarly x ⊕ Hi(x)) is also biased, since x in these
expressions plays a role of an approximation of the Gi and the Hi functions.
These observations mean that the noise variable Na, is also biased if the input
variables are independent and uniformly distributed.
2 The cipher Turing uses similar Z232 → Z232 functions based on Z28 → Z232 S-boxes,

which can be regarded as a source of weakness. However, no attack was found on
Turing so far.

By a similar observation, the expression for e′ can also be approximated as
follows.

e′ = e ⊕ Ne, (6)

where Ne is the noise variable. The expression for Ne can similarly be derived
as

Ne = e ⊕ (e � d′′) ⊕ H3(r3) ⊕
(
(d′′ ⊕ G1(a′′)) � (a′′ ⊕ H1(r4)

)
, (7)

where a′′ = a�f ′′ is a new random variable, which is also independent since it has
f ′′ as its component, and f ′′ does not appear anywhere else in the expression (7).
The two new variables r3 and r4 are also independent and uniformly distributed
random variables by a similar reason.

3.2 Building the Distinguisher

The key observation for our distinguisher, is that one of the input words to the
filter function F , at time t is partially repeated as input to F at time t+15, i.e.,

e(t+15) = a(t) ⊕ M
(t+15)
L . (8)

Let us consider the following sum of two words from the keystream.

s(t) = a′(t) ⊕ e′(t+15) = (a(t) ⊕ N (t)
a) ⊕ (a(t) ⊕ M

(t+15)
L ⊕ N (t+15)

e)

= N (t)
a ⊕ N (t+15)

e︸ ︷︷ ︸
N

(t)
tot

⊕M
(t+15)
L

(9)

By this formula we show how to sample from a given keystream, so that the
samples s(t) are from some nonuniform distribution PDragon of the noise variable
N

(t)
tot (later also referred as P

N
(t)
tot

). Collected samples s(t) form a so-called type
PType, or an empirical distribution. Then, we have two hypothesis:{

H1 : PType is drawn according to PDragon

H2 : PType is drawn according to PRandom

. (10)

To distinguish between them with negligible probability of error (whether the
samples are drawn from the noise distribution PDragon or from the uniform dis-
tribution PRandom), the type should be constructed from the following number of
samples

N ≈ 1/ε2, (11)

where ε is the bias, calculated as

ε = |PDragon − PRandom| =
232−1∑
x=0

|PDragon(x) − PRandom(x)|. (12)

When the type PType is constructed, a common tool in statistical analysis is
the log-likelihood test. The ratio I is calculated as

I = D(PType||PRandom) − D(PType||PDragon)

=
232−1∑
x=0

PType(x) log2

PDragon(x)
PRandom(x)

, (13)

where D(·) is the relative entropy defined for any two distributions P1 and P2 as

D(P1||P2) =
∑
x∈Ω

P1(x) log2

P1(x)
P2(x)

, (14)

where Ω is the probability space.
Finally, the decision rule δ(PType) is the following

δ(PType) =

{
H1, if I ≥ 0
H2, if I < 0

. (15)

For more on statistical analysis and hypothesis testing we refer to, e.g., [17, 18].
The remaining question is how to deal with the counter value ML. Below we

present a set of possible solutions that one could consider.

(1) One possible solution would be to guess the initial state of the counter
M (0) (in total 264 combinations), and then construct 264 types from the
given keystream, assuming the value M

(t)
L in correspondence to the guessed

initial value of M (0). However, it will increase the time complexity of the
distinguisher by 264 times;

(2) One more possibility is to guess the first 32 bits M
(0)
R of the initial value of

the counter M (0), i.e., 232 values. If we do so, then we always know when
the upper 32 bits ML are increased, i.e., at any time t we can express M

(t)
L

as follows.
M

(t)
L = M

(0)
L � ∆(t), (16)

where ∆(t) is known at each time, since M
(t)
R is known. Recall from (9), the

noise variable N
(t)
tot is expressed as s(t) ⊕ M

(t+15)
L . However, this expression

can also be approximated as

s(t) ⊕ (M (0)
L � ∆(t+15)) → s(t) ⊕ (M (0)

L ⊕ ∆(t+15)) ⊕ N2, (17)

where N2 is a new noise variable due to the approximation of the kind
“� ⇒ ⊕”. Since M

(0)
L can be regarded as a constant for every sample s(t),

it only “shifts” the distribution, but will not change the bias. Consider that
a shift of the uniform distribution is again the uniform distribution, so, the
distance between the noise and the uniform distributions will remain the
same. This solution requires O(232) guesses, and also introduce a new noise
variable N2;

(3) Another possible solution could be to consider the sum of two consecutive
samples s(t) ⊕ s(t+1). Since ML changes slowly, then with probability (1 −
2−32) we have M

(t)
L = M

(t+1)
L , and this term will be eliminated from the

expression for that new sample. Unfortunately, this method will decrease
the bias significantly, and then the number of required samples N will be
much larger than in the previous cases.

In our attack we tried different solutions, and based on simulations we decided
to choose solution (2) for our attack, as it has the lowest attack complexity.

3.3 Calculation of the Noise Distribution

Consider the expression for the noise variable s(t) ⊕ M
(t+15)
L = N

(t)
a ⊕ N

(t+15)
e .

For simplicity in the formula, we omit time instances for variables.

N
(t)
tot = N (t)

a ⊕ N (t+15)
e = (a � f ′′) ⊕ (a � d′′) ⊕ H1(r1) ⊕ H3(r3)⊕

⊕
((

f ′′ ⊕ G2(c′′)
)

�
(
c′′ ⊕ H2(r2)

)) ⊕
((

d′′ ⊕ G1(a′′)
)

�
(
a′′ ⊕ H1(r4)

)) (18)

We propose two ways to calculate the distribution of the total noise random
variable N

(t)
tot. Lets truncate the word size by n bits (when we consider the

expression modulo 2n), then in the first case the computational complexity is
O(24n) . This complexity is too high and, therefore, requires the noise variable
to be truncated by some number of bits n � 32, much less than 32 bits. The
second solution has a better complexity O(n2n), but introduces two additional
approximations into the expression, which makes the calculated bias smaller than
the real value, i.e., by this solution we can verify the lower bound for the bias
of the noise variable. Below we describe two methods and give our simulation
results on the bias of the noise variable N

(t)
tot.

(I) Consider the expression (18) taken by modulo 2n, for some n = 1 . . . 32.
Then the distribution of the noise variable can be calculated by the fol-
lowing steps.
a) Construct three distributions, two of them are conditioned

P(G2(c′′) mod 2n|c′′), P(G1(a′′) mod 2n|a′′), P(H1(x) mod 2n)
3.

The algorithm requires one loop for c′′ (a′′ and x) of size 232. The time
required is O(3 · 232);

b) Afterwards, construct two more conditioned distributions

P(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|d′′)

and
P(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|f ′′).

3 If the inputs to the Hi functions is random, their distributions are the same, i.e.,
PH1 = PH2 = PH3 .

This requires four loops for d′′, a′′, x(= G1(a′′) mod 2n), and y(=
H1(r4) mod 2n), which takes time O(24n) (and similar for the sec-
ond distribution);

c) Then, calculate another two conditioned distributions

P(Expr1|a) = P((a�f ′′)⊕(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|a),

P(Expr2|a) = P((a�d′′)⊕(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|a).

Each takes time O(23n);
d) Finally, combine the results, partially using FHT, and then calculate

the bias of the noise:

PNtot = P(Expr1|a) ⊕ P(Expr2|a) ⊕ PH1 ⊕ PH3 .

This will take time O(23n + 3n · 2n).
This algorithm calculates the exact distribution of the noise variable taken
modulo 2n, and has the complexity O(24n). Due to such a high computa-
tional complexity we could only manage to calculate the bias of the noise
when n = 8 and n = 10:

εI |n=8 = 2−80.59

εI |n=10 = 2−80.57
. (19)

(II) Consider two additional approximations of the second � to ⊕ in (18).
Then, the total noise can be expressed as

N
(t)
tot =H1(r1) ⊕ H2(r2) ⊕ H3(r3) ⊕ H1(r4) ⊕

(
G2(c′′) ⊕ c′′

)
⊕ (

G1(a′′) ⊕ a′′) ⊕ N3 ⊕ N2,a ⊕ N2,e,
(20)

where
N3 = (a � f ′′) ⊕ (a � d′′) ⊕ f ′′ ⊕ d′′,

and N2,a and N2,e are two new noise variables due to the approximation
� ⇒ ⊕, i.e., N2,a = (x�y)⊕(x⊕y), for some random inputs x and y, and
similar for N2,e. Introduction of two new noise variables will statistically
make the bias of the total noise variable smaller, but it can give us a lower
bound of the bias, and also allow us to operate with distributions of size
232.
First, calculate the distributions P(Hi), P(G1(a′′)⊕a′′) and P(G1(c′′)⊕c′′),
each taking time O(232). Afterward, note that the expressions for N2,a, N2,e

and N3 belong to the class of pseudo-linear functions modulo 2n (PLFM),
which were introduced in [19]. In the same paper, algorithms for construc-
tion of their distributions were also provided, which take time around
O(δ · 2n), for some small δ. The last step is to perform the convolution
of precomputed distribution tables via FHT in time O(n2n). Algorithms
(PLFM distribution construction and computation of convolutions) and
data structures for operating on large distributions are given in [19]. If we

consider n = 32, then the total time complexity to calculate the distribu-
tion table for Ntot will be around O(238) operations, which is feasible for
a common PC. It took us a few days to accomplish such calculations on a
usual PC with memory 2Gb and 2×200Gb of HDD, and the received bias
of Ntot was

εII |n=32 = 2−74.515. (21)

If we also approximate (M (0)
L � ∆(t)) → (M (0)

L ⊕∆(t)) ⊕N2, and add the
noise N2 to Ntot, we receive the bias

ε∆
II |n=32 = 2−77.5, (22)

which is the lower bound meaning that our distinguisher requires approx-
imately O(2155) words of the keystream, according to (12).

4 Attack Scenarios

In the previous section we have shown how to sample from the given keystream,
where 32 bit samples are drawn from the noise distribution with the bias ε∆

II |n=32 =
2−77.5. I.e., our distinguisher needs around O(2155) words of the keystream to
successfully distinguish the cipher from random. Unfortunately, to construct the
type correctly we have to guess the initial value of the linear part of the cipher,
the lower 32 bits M

(0)
R of the counter M . This guess increases the time complex-

ity of our attack to O(2187), and requires memory O(232). The algorithm of our
distinguisher for Dragon is given in Table 1.

for 0 ≤ M
(0)
R < 232

PType(x) = 0, ∀x ∈ Z232

∆ = 0 (or = −1, if M
(0)
R = 0)

for t = 0, 1, . . . , 2155

if (M
(0)
R � t) = 0 then ∆ = ∆ � 1

s(t) = a′(t) ⊕ e′(t+15) ⊕ ∆

PType(s
(t)) = PType(s

(t)) + 1

I =
�

x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source

Table 1. The distinguisher for Dragon (Scenario I).

We, however, can also show that time complexity can easily be reduced
downto O(2155), if memory of size O(296) is available. Assume we first con-
struct a special table T [∆][s] = #{t ≡ ∆ mod 264, s(t) = s}, where the samples

are taken as s(t) = a′(t) ⊕ e′(t+15). Afterwards, for each guess of M
(0)
L the type

PType(·) is then constructed from the table T in time O(296). Hence, the total
time complexity will be O(2155 + 232 · 296) ≈ O(2155). This scenario is given in
Table 2.

for 0 ≤ t < 2155

T [t mod 264][a′(t) ⊕ e′(t+15)] + +

for M
(0)
R = 0, . . . , 232 − 1

for ∆ = 0, . . . , 264 − 1

for x = 0, . . . , 232 − 1

PType

�
x ⊕ �

(∆ � M
(0)
R) � 32

��
+ = T [∆][x]

I =
�

x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source

Table 2. Distinguisher for Dragon with lower time complexity (Scenario II).

5 Results and Conclusions

Two versions of a distinguishing attack on Dragon were found. The first scenarios
requires a computational complexity of O(2187) and needs memory only O(232).
However, the second scenario has a lower time complexity around O(2155), but
requires a larger amount of memory O(296). These attacks show that Dragon
does not provide full security and can successfully be broken much faster than
the exhaustive search, when a key of 256 bits is used.

From the specification of Dragon we also note that the amount of the keystream
for an unique pair of the IV and the key is limited to 264. However, our attack
works when the same key and IV are used to produce 2155 words of the keystream.
This is an academic attack which shows a statistical weakness of the keystream
sequence, and reveals the leakage of the design.

Actually, our distinguisher consists of 232 subdistinguishers. If one of them
says “this is Dragon”, then it is taken as the result of the final distinguisher. If all
subdistinguishers output “Random source”, then the overall result is “Random”
as well 4.

Below we give a few suggestions how to prevent Dragon from this kind of
attack:
4 The idea to use many subdistinguishers was first proposed in the attack on

Scream [20].

1) The linear part M changes predictably, when the initial state is known. It
might be more difficult to mount the attack if the update of M would depend
on some state of the NLFSR;

2) Another leakage is that two words a′||e′ are accessible to the attacker. If we
would have an access only to a′, or, may be, some other combination of the
output from F (like, the output a′||d′, instead), then it might also protect the
cipher from this attack. However, both these suggestions have weaknesses for
different reasons;

3) One more weakness are poor Gi and Hi S-boxes. May be they can be con-
structed in a different way, closer to some one-to-one mapping function.

Several new stream cipher proposals are based on NLFSRs and this topic has
been poorly investigated so far. We believe that it is important to study such
primitives, since it could be an interesting replacement for widely used LFSR
based stream ciphers.

References

1. B. Zoltak. VMPC one-way function and stream cipher. In B. Roy and W. Meier,
editors, Fast Software Encryption 2004, volume 3017 of Lecture Notes in Computer
Science, pages 210–225. Springer-Verlag, 2004.

2. S. Paul and B. Preneel. A new weakness in the rc4 keystream generator and an
approach to improve the security of the cipher. In B. Roy and W. Meier, editors,
Fast Software Encryption 2004, volume 3017 of Lecture Notes in Computer Science,
pages 245–259. Springer-Verlag, 2004.

3. P. Rogaway and D. Coppersmith. A software-optimized encryption algorithm.
Journal of Cryptology, 11(4):273–287, 1998.

4. P. Rogaway and D. Coppersmith. A software-optimised encryption algorithm. In
R.J. Anderson, editor, Fast Software Encryption’93, volume 809 of Lecture Notes
in Computer Science, pages 56–63. Springer-Verlag, 1994.

5. P. Hawkes and G.G. Rose. Primitive specification and supporting documentation
for SOBER-t16 submission to NESSIE. In Proceedings of First Open NESSIE
Workshop, 2000. Available at http://www.cryptonessie.org, Accessed October 5,
2003.

6. P. Ekdahl and T. Johansson. SNOW - a new stream cipher. In Proceedings of First
Open NESSIE Workshop, 2000.

7. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In
K. Nyberg and H. Heys, editors, Selected Areas in Cryptography—SAC 2002, vol-
ume 2595 of Lecture Notes in Computer Science, pages 47–61. Springer-Verlag,
2002.

8. J. Daemen and C. Clapp. Fast hashing and stream encryption with PANAMA. In
Fast Software Encryption’98, volume 1372 of Lecture Notes in Computer Science,
pages 60–74. Springer-Verlag, 1998.

9. S. Halevi, D. Coppersmith, and C.S. Jutla. Scream: A software-efficient stream
cipher. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, vol-
ume 2365 of Lecture Notes in Computer Science, pages 195–209. Springer-Verlag,
2002.

10. D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel. A new
keystream generator MUGI. In J. Daemen and V. Rijmen, editors, Fast Soft-
ware Encryption 2002, volume 2365 of Lecture Notes in Computer Science, pages
179–194. Springer-Verlag, 2002.

11. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix
fast encryption and authentication in a single cryptographic primitive. In Fast
Software Encryption 2003, volume 2887 of Lecture Notes in Computer Science,
pages 330–346. Springer-Verlag, 2003.

12. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansed, and O. Scavenius. Rab-
bit: A new high-performance stream cipher. In Fast Software Encryption 2003, vol-
ume 2887 of Lecture Notes in Computer Science, pages 307–329. Springer-Verlag,
2003.

13. G.G. Rose and P. Hawkes. Turing: A fast stream cipher. In T. Johansson, editor,
Fast Software Encryption 2003, To be published in Lecture Notes in Computer
Science. Springer-Verlag, 2003.

14. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. Avail-
able at http://www.cryptonessie.org, Accessed August 18, 2003, 1999.

15. SKEW. Symmetric key encryption workshop. Available at
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/stvl/, Accessed August 6,
2005, 2005.

16. K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E. Dawson, H. Lee,
and S. Moon. Dragon: A fast word based stream cipher. ECRYPT Stream Cipher
Project Report 2005/006.

17. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

18. J. Golić. Intrinsic statistical weakness of keystream generators. pages 91–103,
1994.

19. A. Maximov and T. Johansson. Fast computation of large distributions and its
cryptographic applications. To appear at Asiacrypt 2005.

20. T. Johansson and A. Maximov. A Linear Distinguishing Attack on Scream. In
Information Symposium in Information Theory—ISIT 2003, page 164. IEEE, 2003.

0 The work described in this paper has been supported in part by Grant VR 621-
2001-2149, and in part by the European Commission through the IST Program
under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

